TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 12: Tail inequalities 2

Recap

- The probabilistic method, coupon collector problem, DeMillo-Lipton-Schwartz-Zippel lemma, polynomial identity testing, application of DLSZ to finding perfect matchings.
- Basic tail inequalities: Markov's inequality and Chebyshev's inequality.
- Properties of variance: $\operatorname{Var}\left(\sum_{i} X_{i}\right)=\sum_{i} \operatorname{Var}\left(X_{i}\right)$ if pairwise independent.
- Markov vs Chebyshev for coin flips.
- Threshold phenomena in random graphs.

Markov and Chebyshev

Proposition 1.1 (Markov's Inequality) Let X be non-negative variable. Then,

$$
\begin{equation*}
\mathbb{P}[X \geq t] \leq \frac{\mathbb{E}[X]}{t} \tag{1}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\mathbb{P}[X \geq a \cdot \mathbb{E}[X]] \leq \frac{1}{a} \tag{2}
\end{equation*}
$$

Proposition 1.2 (Chebyshev's inequality) Let X be a random variable and let $\mu=\mathbb{E}[X]$. Then,

$$
\begin{equation*}
\mathbb{P}[|X-\mu| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}=\frac{\mathbb{E}\left[(X-\mu)^{2}\right]}{t^{2}} \tag{3}
\end{equation*}
$$

Threshold phenomena in Random Graphs

Consider a graph G on n vertices where each possible edge is placed into the graph independently with probability p. This is called the $G_{n, p}$ random graph model.

It turns out that many graph properties have "threshold phenomena": for some function $f(n)$, for $p \ll f(n)$ the graph will almost surely not have the property and for $p \gg f(n)$ the graph almost surely will have the property (or vice-versa).

One example: the property of containing a 4-clique.

Threshold phenomena in Random Graphs

Theorem 3.1 Let G be generated randomly according to the model $\mathcal{G}_{n, p}$ graph. Then,

1. If $p \ll n^{-2 / 3}$, then $\mathbb{P}[G$ contains a 4 -clique $] \rightarrow 0$ as $n \rightarrow \infty$.
2. If $p \gg n^{-2 / 3}$, then $\mathbb{P}[G$ contains a 4 -clique $] \rightarrow 1$ as $n \rightarrow \infty$.
(1) Is the easier case, so let's start with that:

- For each set S of 4 vertices, define indicator R.V. X_{S} for the event that S is a clique.
- Let $X=\sum_{S} X_{S}$ denote the number of 4-cliques in the graph.
- We have $\mathbb{E}[X]=\sum_{S} \mathbb{E}\left[X_{S}\right]=O\left(n^{4} p^{6}\right)=o(1)$ for $p \ll n^{-2 / 3}$.
- So, by Markov's inequality, $\mathbb{P}[X \geq 1] \leq \mathbb{E}[X] / 1=o(1)$.

Threshold phenomena in Random Graphs

Theorem 3.1 Let G be generated randomly according to the model $\mathcal{G}_{n, p}$ graph. Then,

1. If $p \ll n^{-2 / 3}$, then $\mathbb{P}[G$ contains a 4 -clique $] \rightarrow 0$ as $n \rightarrow \infty$.
2. If $p \gg n^{-2 / 3}$, then $\mathbb{P}[G$ contains a 4 -clique $] \rightarrow 1$ as $n \rightarrow \infty$.

For (2), we have $\mathbb{E}[X]=\Theta\left(n^{4} p^{6}\right) \rightarrow \infty$, but this is not sufficient to get $\mathbb{P}[X=0]=o(1)$.
For this, we will use Chebyshev's inequality with $t=\mathbb{E}[X]$, giving:

$$
\mathbb{P}[X=0] \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}}
$$

Second Moment method

So, if we can show that $\operatorname{Var}[X]=o\left(\mathbb{E}[X]^{2}\right)$, we will be done.

Threshold phenomena in Random Graphs

Theorem 3.1 Let G be generated randomly according to the model $\mathcal{G}_{n, p}$ graph. Then,

1. If $p \ll n^{-2 / 3}$, then $\mathbb{P}[G$ contains a 4 -clique $] \rightarrow 0$ as $n \rightarrow \infty$.
2. If $p \gg n^{-2 / 3}$, then $\mathbb{P}[G$ contains a 4 -clique $] \rightarrow 1$ as $n \rightarrow \infty$.

We can write variance as: $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\sum_{S, S^{\prime}} \mathbb{E}\left[X_{S} X_{S^{\prime}}\right]-\mathbb{E}[X]^{2}$.
Let's now consider a few cases for S, S^{\prime} :

- If S, S^{\prime} share at most 1 vertex in common, then X_{S} and $X_{S^{\prime}}$ are independent, so $\mathbb{E}\left[X_{S} X_{S^{\prime}}\right]=\mathbb{E}\left[X_{S}\right] \mathbb{E}\left[X_{S^{\prime}}\right]$ and the sum over all of these is at most $\mathbb{E}[X]^{2}$. We can therefore cover these using the $-\mathbb{E}[X]^{2}$ term.

So, if we can show that $\operatorname{Var}[X]=o\left(\mathbb{E}[X]^{2}\right)$, we will be done.

Threshold phenomena in Random Graphs

Theorem 3.1 Let G be generated randomly according to the model $\mathcal{G}_{n, p}$ graph. Then,

1. If $p \ll n^{-2 / 3}$, then $\mathbb{P}[G$ contains a 4 -clique $] \rightarrow 0$ as $n \rightarrow \infty$.
2. If $p \gg n^{-2 / 3}$, then $\mathbb{P}[G$ contains a 4 -clique $] \rightarrow 1$ as $n \rightarrow \infty$.

We can write variance as: $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\sum_{S, S^{\prime}} \mathbb{E}\left[X_{S} X_{S^{\prime}}\right]-\mathbb{E}[X]^{2}$.
Let's now consider a few cases for S, S^{\prime} :

- If S, S^{\prime} share 2 vertices in common, there are at most $O\left(n^{6}\right)$ such cases and each one has $\mathbb{E}\left[X_{S} X_{S^{\prime}}\right]=p^{11}$. So, overall, we get $O\left(n^{6} p^{11}\right)=o\left(n^{8} p^{12}\right)=o\left(\mathbb{E}[X]^{2}\right)$.

So, if we can show that $\operatorname{Var}[X]=o\left(\mathbb{E}[X]^{2}\right)$, we will be done.

Threshold phenomena in Random Graphs

Theorem 3.1 Let G be generated randomly according to the model $\mathcal{G}_{n, p}$ graph. Then,

1. If $p \ll n^{-2 / 3}$, then $\mathbb{P}[G$ contains a 4 -clique $] \rightarrow 0$ as $n \rightarrow \infty$.
2. If $p \gg n^{-2 / 3}$, then $\mathbb{P}[G$ contains a 4 -clique $] \rightarrow 1$ as $n \rightarrow \infty$.

We can write variance as: $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\sum_{S, S^{\prime}} \mathbb{E}\left[X_{S} X_{S^{\prime}}\right]-\mathbb{E}[X]^{2}$.
Let's now consider a few cases for S, S^{\prime} :

- If S, S^{\prime} share 3 vertices in common, there are at most $O\left(n^{5}\right)$ such cases and each one has $\mathbb{E}\left[X_{S} X_{S^{\prime}}\right]=p^{9}$. So, overall, we get $O\left(n^{5} p^{9}\right)=o\left(n^{8} p^{12}\right)=o\left(\mathbb{E}[X]^{2}\right)$.

So, if we can show that $\operatorname{Var}[X]=o\left(\mathbb{E}[X]^{2}\right)$, we will be done.

Threshold phenomena in Random Graphs

Theorem 3.1 Let G be generated randomly according to the model $\mathcal{G}_{n, p}$ graph. Then,

1. If $p \ll n^{-2 / 3}$, then $\mathbb{P}[G$ contains a 4 -clique $] \rightarrow 0$ as $n \rightarrow \infty$.
2. If $p \gg n^{-2 / 3}$, then $\mathbb{P}[G$ contains a 4 -clique $] \rightarrow 1$ as $n \rightarrow \infty$.

We can write variance as: $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\sum_{S, S^{\prime}} \mathbb{E}\left[X_{S} X_{S^{\prime}}\right]-\mathbb{E}[X]^{2}$.
Let's now consider a few cases for S, S^{\prime} :

- And finally, if S, S^{\prime} share all 4 vertices in common, then the total is just $\mathbb{E}[X]=o\left(\mathbb{E}[X]^{2}\right)$.
- So, overall we have $\operatorname{Var}[X]=o\left(\mathbb{E}[X]^{2}\right)$ as desired.

So, if we can show that $\operatorname{Var}[X]=o\left(\mathbb{E}[X]^{2}\right)$, we will be done.

Chernoff-Hoeffding bounds

$$
y=e^{x}, y=1+x
$$

Consider n mutually independent Bernoulli R.V.s X_{1}, \ldots, X_{n}, wl

- Let $X=\sum_{i} X_{i}$, and let $\mu=\mathbb{E}[X]=\sum_{i} p_{i}$.

Q: how can we use mutual independence to show that it is ve far from its expectation?

- So, if $X_{i}=0$ then $Y_{i}=1$, and if $X_{i}=1$ then $Y_{i} \approx 1+\lambda . \quad \mathbb{E}\left[Y_{i}\right] \approx 1+p_{i} \lambda \approx e^{p_{i} \lambda}$.
- Now, consider product Y of the $Y_{i} . \mathbb{E}[Y]=\prod_{i} \mathbb{E}\left[Y_{i}\right] \approx e^{\lambda \sum_{i} p_{i}}=e^{\lambda \mathbb{E}[X]}$.
- By Markov, $\mathbb{P}[Y \geq k \mathbb{E}[Y]] \leq \frac{1}{k}$. But since $X=\frac{\ln Y}{\lambda}$, this means $\mathbb{P}\left[X \geq \frac{\ln \mathbb{E}[Y]}{\lambda}+\frac{\ln k}{\lambda}\right] \leq \frac{1}{k}$.
- And for small $\lambda, \frac{\ln \mathbb{E}[Y]}{\lambda} \approx \mathbb{E}[X]$. So, even for large k, X is just a little bit larger than $\mathbb{E}[X]$.

Chernoff-Hoeffding bounds

Consider n mutually independent Bernoulli R.V.s X_{1}, \ldots, X_{n}, where $\mathbb{P}\left(X_{i}=1\right)=p_{i}$.

- Let $X=\sum_{i} X_{i}$, and let $\mu=\mathbb{E}[X]=\sum_{i} p_{i}$.

> But, we are cheating: these " \approx " are not exact and require small λ. So, let's now do this carefully.

Idea: Define $Y_{i}=e^{\lambda X_{i}}$ for some small $\lambda>0$.

- So, if $X_{i}=0$ then $Y_{i}=1$, and if $X_{i}=1$ then $Y_{i} \approx 1+\lambda . \quad \mathbb{E}\left[Y_{i}\right] \approx 1+p_{i} \lambda \approx e^{p_{i} \lambda}$.
- Now, consider product Y of the $Y_{i} . \mathbb{E}[Y]=\prod_{i} \mathbb{E}\left[Y_{i}\right] \approx e^{\lambda \sum_{i} p_{i}}=e^{\lambda \mathbb{E}[X]}$.
- By Markov, $\mathbb{P}[Y \geq k \mathbb{E}[Y]] \leq \frac{1}{k}$. But since $X=\frac{\ln Y}{\lambda}$, this means $\mathbb{P}\left[X \geq \frac{\ln \mathbb{E}[Y]}{\lambda}+\frac{\ln k}{\lambda}\right] \leq \frac{1}{k}$.
- And for small $\lambda, \frac{\ln \mathbb{E}[Y]}{\lambda} \approx \mathbb{E}[X]$. So, even for large k, X is just a little bit larger than $\mathbb{E}[X]$.

Chernoff-Hoeffding bounds

$$
y=e^{x}, y=1+x
$$

Consider n mutually independent Bernoulli R.V.s X_{1}, \ldots, X_{n}, wl

- Let $X=\sum_{i} X_{i}$, and let $\mu=\mathbb{E}[X]=\sum_{i} p_{i}$.

Using the fact that the function e^{x} is strictly increasing, we get that

$$
\mathbb{P}[X \geq(1+\delta) \mu]=\mathbb{P}\left[e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right] \quad \text { (Markov) } \leq
$$

Let's analyze the numerator:

$$
\mathbb{E}\left[e^{\lambda X}\right]=\mathbb{E}\left[e^{\lambda\left(X_{1}+\ldots+X_{n}\right)}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right] \stackrel{(\text { independence })}{=} \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right]
$$

Now use $1+x \leq e^{x}$ to get

$$
=\prod_{i=1}^{n}\left[p_{i} e^{\lambda}+\left(1-p_{i}\right)\right]
$$

$$
\mathbb{E}\left[e^{\lambda X}\right] \leq e^{\sum_{i} p_{i}\left(e^{\lambda}-1\right)}=e^{\left(e^{\lambda}-1\right) \mu}
$$

$$
=\prod_{i=1}^{n}\left[1+p_{i}\left(e^{\lambda}-1\right)\right] . \leq \prod_{i=1}^{n} e^{p_{i}\left(e^{\lambda}-1\right)}
$$

Chernoff-Hoeffding bounds

So, $\mathbb{P}[X \geq(1+\delta) \mu] \leq e^{\left(e^{\lambda}-1\right) \mu-\lambda(1+\delta) \mu}$. Set λ to minimize $\left(e^{\lambda}=1+\delta, \lambda=\ln (1+\delta)\right)$

Using the fact that the function e^{x} is strictly increasing, we get that for $\lambda>0$

$$
\mathbb{P}[X \geq(1+\delta) \mu]=\mathbb{P}\left[e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right] \stackrel{(\text { Markov) }}{\leq} \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta) \mu}}
$$

Let's analyze the numerator:

$$
\mathbb{E}\left[e^{\lambda X}\right]=\mathbb{E}\left[e^{\lambda\left(X_{1}+\ldots+X_{n}\right)}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right] \stackrel{(\text { independence })}{=} \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right]
$$

Now use $1+x \leq e^{x}$ to get

$$
=\prod_{i=1}^{n}\left[p_{i} e^{\lambda}+\left(1-p_{i}\right)\right]
$$

$$
\mathbb{E}\left[e^{\lambda X}\right] \leq e^{\sum_{i} p_{i}\left(e^{\lambda}-1\right)}=e^{\left(e^{\lambda}-1\right) \mu}
$$

$$
=\prod_{i=1}^{n}\left[1+p_{i}\left(e^{\lambda}-1\right)\right]
$$

Chernoff-Hoeffding bounds

So, $\mathbb{P}[X \geq(1+\delta) \mu] \leq e^{\left(e^{\lambda}-1\right) \mu-\lambda(1+\delta) \mu}$. Set λ to minimize $\left(e^{\lambda}=1+\delta, \lambda=\ln (1+\delta)\right)$
Get: $\mathbb{P}[X \geq(1+\delta) \mu] \leq e^{\mu(\delta-(1+\delta) \ln (1+\delta))}=\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$.
Similarly, $\mathbb{P}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}$.
For $\delta \in[0,1]$ can use Taylor series to simplify to:
$>\mathbb{P}[X \geq(1+\delta) \mu] \leq e^{-\delta^{2} \mu / 3}$
$>\mathbb{P}[X \leq(1-\delta) \mu] \leq e^{-\delta^{2} \mu / 2}$

$$
\begin{aligned}
& e^{\delta-(1+\delta) \ln (1+\delta)} \\
& \leq e^{\delta-(1+\delta)\left(\delta-\frac{\delta^{2}}{2}+\frac{\delta^{3}}{3}-\frac{\delta^{4}}{4}+\cdots\right)} \\
& =e^{-\frac{\delta^{2}}{2}+\frac{\delta^{3}}{6}-\frac{\delta^{4}}{12}+\cdots} \leq e^{-\frac{\delta^{2}}{3}}
\end{aligned}
$$

Comparing vs Chebyshev on fair coin tosses

Consider n independent fair coin flips $X_{1}, \ldots, X_{n}, \mathbb{P}\left(X_{i}=1\right)=\frac{1}{2}, X=\sum_{i} X_{i}, \mu=\mathbb{E}[X]=\frac{n}{2}$

- Chebyshev: $\mathbb{P}[|X-\mu| \geq \delta \mu] \leq \frac{\operatorname{Var}[X]}{\delta^{2} \mu^{2}}=\frac{n / 4}{\delta^{2}(n / 2)^{2}}=\frac{1}{\delta^{2} n}$.
- Chernoff/Hoeffding: $\mathbb{P}[|X-\mu| \geq \delta \mu] \leq 2 e^{-\delta^{2} n / 6}$.

$$
>\text { Using } \delta=k / \sqrt{n} \text {, get } \mathbb{P}[|X-\mu| \geq k \sigma]=e^{-o\left(k^{2}\right)} \text {. }
$$

$\boldsymbol{n}=1000, \mu=500$

- Markov $\mathbb{P}[X>600] \leq 5 / 6 \approx 0.83$
- Chebyshev $\mathbb{P}[X>600] \leq \mathbb{P}[|X-500|>0.2 \times 500] \leq 250 /(0.2 \times 500)^{2} \approx 0.025$
- Chernoff $\mathbb{P}[X>600] \leq \mathbb{P}[|X-500|>0.2 \times 500] \leq 2 e^{-.2^{2} \times 1000 / 6} \approx 0.001$

Random Vectors

Suppose we pick m random vectors $v_{1}, \ldots, v_{m} \in\{-1,1\}^{n}$. Clearly, $\left\langle v_{i}, v_{i}\right\rangle=n$.
What about $\left\langle v_{i}, v_{j}\right\rangle$ for $i \neq j$? Claim: whp, $\left|\left\langle v_{i}, v_{j}\right\rangle\right|=O(\sqrt{n \log m})$ for all $i \neq j$.
So, even though can only have n truly orthogonal vectors, can have a much larger number of nearly-orthogonal vectors.

Random Vectors

Suppose we pick m random vectors $v_{1}, \ldots, v_{m} \in\{-1,1\}^{n}$. Clearly, $\left\langle v_{i}, v_{i}\right\rangle=n$.
What about $\left\langle v_{i}, v_{j}\right\rangle$ for $i \neq j$? Claim: whp, $\left|\left\langle v_{i}, v_{j}\right\rangle\right|=O(\sqrt{n \log m})$ for all $i \neq j$.
Proof: First, fix some i, j s.t. $i \neq j$ (then will do a union bound over all $\binom{m}{2}$ such pairs).

- For $k \in\{1, \ldots, n\}$ let X_{k} be indicator RV for event that k th coordinate of v_{i}, v_{j} are equal.
- Let $X=\sum_{k} X_{k}$. By Chernoff/Hoeffding, $\mathbb{P}\left(\left|X-\frac{n}{2}\right| \geq \frac{\delta n}{2}\right) \leq 2 e^{-\delta^{2} n / 6}$.
- Notice that $\left|\left\langle v_{i}, v_{j}\right\rangle\right|=2\left|X-\frac{n}{2}\right|$. So, using $\delta=6 \sqrt{\frac{\ln m}{n}}$ we get:

$$
\mathbb{P}\left(\left|\left\langle v_{i}, v_{j}\right\rangle\right| \geq 6 \sqrt{n \ln m}\right)=\mathbb{P}\left(2\left|X-\frac{n}{2}\right| \geq 2 \frac{\delta n}{2}\right) \leq 2 e^{-6 \ln m}=2 m^{-6}
$$

Finally, do a union bound over all $\binom{m}{2}$ pairs. Overall prob of failure $\leq m^{-4}$.

Balls and Bins revisited

We saw earlier that if we toss balls independently at random into n bins, it will take an expected $\Theta(n \log n)$ tosses until there are no empty bins.

Other statistics:

- If toss n balls into n bins, what is the expected fraction of empty bins?
$>$ Let X_{i} be indicator R.V. for event that bin i is empty. $\mathbb{E}\left[X_{i}\right]=\left(1-\frac{1}{n}\right)^{n} \approx \frac{1}{e}$. So, expected fraction of empty bins is $\approx 1 / e$.
- If toss n balls into n bins, how loaded will the most-loaded bin be?

Balls and Bins revisited

Claim: if we toss n balls into n bins, whp no bin will have more than $t=\frac{3 \ln n}{\ln \ln n}$ balls.

Proof:

- Let $X_{i j}$ be indicator RV for event that ball j is in bin i. Let $Z_{i}=\sum_{j} X_{i j}$. What is $\mathbb{E}\left[Z_{i}\right]$?
- $\mathbb{E}\left[Z_{i}\right]=1$ and is a sum of independent Bernoulli R.V.s, so can apply Chernoff/Hoeffding.
- $\mathbb{P}\left[Z_{i} \geq t\right] \leq \frac{e^{t-1}}{t^{t}} \leq\left(\frac{e}{t}\right)^{t}$.

$$
\mathbb{P}\left[Z_{i} \geq \underset{=t}{(1+\delta) \mu]} \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}\right.
$$

- For $t=\frac{3 \ln n}{\ln \ln n}$ we have $\left(\frac{e}{t}\right)^{t} \leq\left(\frac{\ln \ln n}{\ln n}\right)^{t}=O\left(\left(\frac{1}{\ln n}\right)^{0.9 t}\right)=O\left(e^{-2.7 \ln n}\right)=O\left(n^{-2.7}\right)$.
- Now do a union bound over all i.

