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Recap
• The probabilistic method, coupon collector problem, DeMillo-Lipton-Schwartz-Zippel 

lemma, polynomial identity testing, application of DLSZ to finding perfect matchings.

• Basic tail inequalities: Markov’s inequality and Chebyshev’s inequality.

• Properties of variance: 𝑉𝑉𝑉𝑉𝑉𝑉(∑𝑖𝑖 𝑋𝑋𝑖𝑖) = ∑𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋𝑖𝑖 if pairwise independent.

• Markov vs Chebyshev for coin flips.

• Threshold phenomena in random graphs.



Markov and Chebyshev



Threshold phenomena in Random Graphs
Consider a graph 𝐺𝐺 on 𝑛𝑛 vertices where each possible edge is placed into the graph 
independently with probability 𝑝𝑝.  This is called the 𝐺𝐺𝑛𝑛,𝑝𝑝 random graph model.

It turns out that many graph properties have “threshold phenomena”: for some 
function 𝑓𝑓(𝑛𝑛), for 𝑝𝑝 ≪ 𝑓𝑓(𝑛𝑛) the graph will almost surely not have the property and for 
𝑝𝑝 ≫ 𝑓𝑓(𝑛𝑛) the graph almost surely will have the property (or vice-versa).

One example: the property of containing a 4-clique.



Threshold phenomena in Random Graphs

(1) Is the easier case, so let’s start with that:

• For each set 𝑆𝑆 of 4 vertices, define indicator R.V. 𝑋𝑋𝑆𝑆 for the event that 𝑆𝑆 is a clique.

• Let 𝑋𝑋 = ∑𝑆𝑆𝑋𝑋𝑠𝑠 denote the number of 4-cliques in the graph.

• We have 𝔼𝔼 𝑋𝑋 = ∑𝑆𝑆𝔼𝔼 𝑋𝑋𝑆𝑆 = 𝑂𝑂 𝑛𝑛4𝑝𝑝6 = 𝑜𝑜 1 for 𝑝𝑝 ≪ 𝑛𝑛−2/3.

• So, by Markov’s inequality, ℙ 𝑋𝑋 ≥ 1 ≤ 𝔼𝔼 𝑋𝑋 /1 = 𝑜𝑜(1).



Threshold phenomena in Random Graphs

For (2), we have 𝔼𝔼 𝑋𝑋 = Θ 𝑛𝑛4𝑝𝑝6 → ∞, but this is not sufficient to get ℙ 𝑋𝑋 = 0 = 𝑜𝑜(1).

For this, we will use Chebyshev’s inequality with  𝑡𝑡 = 𝔼𝔼[𝑋𝑋], giving:

ℙ 𝑋𝑋 = 0 ≤
𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋
𝔼𝔼 𝑋𝑋 2

So, if we can show that 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝑜𝑜(𝔼𝔼 𝑋𝑋 2), we will be done.

Second Moment method



Threshold phenomena in Random Graphs

We can write variance as: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝔼𝔼 𝑋𝑋2 − 𝔼𝔼 𝑋𝑋 2 = ∑𝑆𝑆,𝑆𝑆′ 𝔼𝔼 𝑋𝑋𝑆𝑆𝑋𝑋𝑆𝑆′ − 𝔼𝔼 𝑋𝑋 2.

Let’s now consider a few cases for 𝑆𝑆, 𝑆𝑆𝑆:

• If 𝑆𝑆, 𝑆𝑆𝑆 share at most 1 vertex in common, then 𝑋𝑋𝑠𝑠 and 𝑋𝑋𝑆𝑆′ are independent, so 
𝔼𝔼 𝑋𝑋𝑆𝑆𝑋𝑋𝑆𝑆′ = 𝔼𝔼 𝑋𝑋𝑆𝑆 𝔼𝔼[𝑋𝑋𝑆𝑆′] and the sum over all of these is at most 𝔼𝔼 𝑋𝑋 2. We can 
therefore cover these using the −𝔼𝔼 𝑋𝑋 2 term.

So, if we can show that 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝑜𝑜(𝔼𝔼 𝑋𝑋 2), we will be done.



Threshold phenomena in Random Graphs

We can write variance as: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝔼𝔼 𝑋𝑋2 − 𝔼𝔼 𝑋𝑋 2 = ∑𝑆𝑆,𝑆𝑆′ 𝔼𝔼 𝑋𝑋𝑆𝑆𝑋𝑋𝑆𝑆′ − 𝔼𝔼 𝑋𝑋 2.

Let’s now consider a few cases for 𝑆𝑆, 𝑆𝑆𝑆:

• If 𝑆𝑆, 𝑆𝑆𝑆 share 2 vertices in common, there are at most 𝑂𝑂(𝑛𝑛6) such cases and each one 
has 𝔼𝔼 𝑋𝑋𝑠𝑠𝑋𝑋𝑆𝑆′ = 𝑝𝑝11.  So, overall, we get 𝑂𝑂 𝑛𝑛6𝑝𝑝11 = 𝑜𝑜 𝑛𝑛8𝑝𝑝12 = 𝑜𝑜 𝔼𝔼 𝑋𝑋 2 .

So, if we can show that 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝑜𝑜(𝔼𝔼 𝑋𝑋 2), we will be done.



Threshold phenomena in Random Graphs

We can write variance as: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝔼𝔼 𝑋𝑋2 − 𝔼𝔼 𝑋𝑋 2 = ∑𝑆𝑆,𝑆𝑆′ 𝔼𝔼 𝑋𝑋𝑆𝑆𝑋𝑋𝑆𝑆′ − 𝔼𝔼 𝑋𝑋 2.

Let’s now consider a few cases for 𝑆𝑆, 𝑆𝑆𝑆:

• If 𝑆𝑆, 𝑆𝑆𝑆 share 3 vertices in common, there are at most 𝑂𝑂(𝑛𝑛5) such cases and each one 
has 𝔼𝔼 𝑋𝑋𝑠𝑠𝑋𝑋𝑆𝑆′ = 𝑝𝑝9.  So, overall, we get 𝑂𝑂 𝑛𝑛5𝑝𝑝9 = 𝑜𝑜 𝑛𝑛8𝑝𝑝12 = 𝑜𝑜 𝔼𝔼 𝑋𝑋 2 .

So, if we can show that 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝑜𝑜(𝔼𝔼 𝑋𝑋 2), we will be done.



Threshold phenomena in Random Graphs

We can write variance as: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝔼𝔼 𝑋𝑋2 − 𝔼𝔼 𝑋𝑋 2 = ∑𝑆𝑆,𝑆𝑆′ 𝔼𝔼 𝑋𝑋𝑆𝑆𝑋𝑋𝑆𝑆′ − 𝔼𝔼 𝑋𝑋 2.

Let’s now consider a few cases for 𝑆𝑆, 𝑆𝑆𝑆:

• And finally, if 𝑆𝑆, 𝑆𝑆𝑆 share all 4 vertices in common, then the total is just 𝔼𝔼[𝑋𝑋] = 𝑜𝑜 𝔼𝔼 𝑋𝑋 2 .

So, if we can show that 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝑜𝑜(𝔼𝔼 𝑋𝑋 2), we will be done.

• So, overall we have 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋] = 𝑜𝑜 𝔼𝔼 𝑋𝑋 2 as desired.



Chernoff-Hoeffding bounds
Consider 𝑛𝑛 mutually independent Bernoulli R.V.s 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛, where ℙ 𝑋𝑋𝑖𝑖 = 1 = 𝑝𝑝𝑖𝑖.

• Let 𝑋𝑋 = ∑𝑖𝑖 𝑋𝑋𝑖𝑖, and let 𝜇𝜇 = 𝔼𝔼 𝑋𝑋 = ∑𝑖𝑖 𝑝𝑝𝑖𝑖.

Q: how can we use mutual independence to show that it is very unlikely that 𝑋𝑋 will be too
far from its expectation?

Idea: Define 𝑌𝑌𝑖𝑖 = 𝑒𝑒𝜆𝜆𝑋𝑋𝑖𝑖 for some small 𝜆𝜆 > 0. 

• So, if 𝑋𝑋𝑖𝑖 = 0 then 𝑌𝑌𝑖𝑖 = 1, and if 𝑋𝑋𝑖𝑖 = 1 then 𝑌𝑌𝑖𝑖 ≈ 1 + 𝜆𝜆. 𝔼𝔼 𝑌𝑌𝑖𝑖 ≈ 1 + 𝑝𝑝𝑖𝑖𝜆𝜆 ≈ 𝑒𝑒𝑝𝑝𝑖𝑖𝜆𝜆.

• Now, consider product 𝑌𝑌 of the 𝑌𝑌𝑖𝑖. 𝔼𝔼 𝑌𝑌 = ∏𝑖𝑖 𝔼𝔼 𝑌𝑌𝑖𝑖 ≈ 𝑒𝑒𝜆𝜆 ∑𝑖𝑖 𝑝𝑝𝑖𝑖 = 𝑒𝑒𝜆𝜆𝔼𝔼[𝑋𝑋].

• By Markov, ℙ 𝑌𝑌 ≥ 𝑘𝑘𝔼𝔼 𝑌𝑌 ≤ 1
𝑘𝑘

.   But since 𝑋𝑋 = ln 𝑌𝑌
𝜆𝜆

, this means ℙ 𝑋𝑋 ≥ ln 𝔼𝔼[𝑌𝑌]
𝜆𝜆

+ ln 𝑘𝑘
𝜆𝜆

≤ 1
𝑘𝑘

.

• And for small 𝜆𝜆, ln 𝔼𝔼[𝑌𝑌]
𝜆𝜆

≈ 𝔼𝔼[𝑋𝑋].  So, even for large 𝑘𝑘, 𝑋𝑋 is just a little bit larger than 𝔼𝔼[𝑋𝑋].

𝑦𝑦 = 𝑒𝑒𝑥𝑥, 𝑦𝑦 = 1 + 𝑥𝑥



Chernoff-Hoeffding bounds
Consider 𝑛𝑛 mutually independent Bernoulli R.V.s 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛, where ℙ 𝑋𝑋𝑖𝑖 = 1 = 𝑝𝑝𝑖𝑖.

• Let 𝑋𝑋 = ∑𝑖𝑖 𝑋𝑋𝑖𝑖, and let 𝜇𝜇 = 𝔼𝔼 𝑋𝑋 = ∑𝑖𝑖 𝑝𝑝𝑖𝑖.

But, we are cheating: these “≈” are not exact and require small 
𝜆𝜆.  So, let’s now do this carefully.

Idea: Define 𝑌𝑌𝑖𝑖 = 𝑒𝑒𝜆𝜆𝑋𝑋𝑖𝑖 for some small 𝜆𝜆 > 0. 

• So, if 𝑋𝑋𝑖𝑖 = 0 then 𝑌𝑌𝑖𝑖 = 1, and if 𝑋𝑋𝑖𝑖 = 1 then 𝑌𝑌𝑖𝑖 ≈ 1 + 𝜆𝜆. 𝔼𝔼 𝑌𝑌𝑖𝑖 ≈ 1 + 𝑝𝑝𝑖𝑖𝜆𝜆 ≈ 𝑒𝑒𝑝𝑝𝑖𝑖𝜆𝜆.

• Now, consider product 𝑌𝑌 of the 𝑌𝑌𝑖𝑖. 𝔼𝔼 𝑌𝑌 = ∏𝑖𝑖 𝔼𝔼 𝑌𝑌𝑖𝑖 ≈ 𝑒𝑒𝜆𝜆 ∑𝑖𝑖 𝑝𝑝𝑖𝑖 = 𝑒𝑒𝜆𝜆𝔼𝔼[𝑋𝑋].

• By Markov, ℙ 𝑌𝑌 ≥ 𝑘𝑘𝔼𝔼 𝑌𝑌 ≤ 1
𝑘𝑘

.   But since 𝑋𝑋 = ln 𝑌𝑌
𝜆𝜆

, this means ℙ 𝑋𝑋 ≥ ln 𝔼𝔼[𝑌𝑌]
𝜆𝜆

+ ln 𝑘𝑘
𝜆𝜆

≤ 1
𝑘𝑘

.

• And for small 𝜆𝜆, ln 𝔼𝔼[𝑌𝑌]
𝜆𝜆

≈ 𝔼𝔼[𝑋𝑋].  So, even for large 𝑘𝑘, 𝑋𝑋 is just a little bit larger than 𝔼𝔼[𝑋𝑋].



Chernoff-Hoeffding bounds
Consider 𝑛𝑛 mutually independent Bernoulli R.V.s 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛, where ℙ 𝑋𝑋𝑖𝑖 = 1 = 𝑝𝑝𝑖𝑖.

• Let 𝑋𝑋 = ∑𝑖𝑖 𝑋𝑋𝑖𝑖, and let 𝜇𝜇 = 𝔼𝔼 𝑋𝑋 = ∑𝑖𝑖 𝑝𝑝𝑖𝑖.

Let’s analyze the numerator:

Now use 1 + 𝑥𝑥 ≤ 𝑒𝑒𝑥𝑥 to get

𝔼𝔼 𝑒𝑒𝜆𝜆𝑋𝑋 ≤ 𝑒𝑒∑𝑖𝑖 𝑝𝑝𝑖𝑖 𝑒𝑒𝜆𝜆−1 = 𝑒𝑒 𝑒𝑒𝜆𝜆−1 𝜇𝜇

𝑦𝑦 = 𝑒𝑒𝑥𝑥, 𝑦𝑦 = 1 + 𝑥𝑥

≤�
𝑖𝑖=1

𝑛𝑛

𝑒𝑒𝑝𝑝𝑖𝑖(𝑒𝑒𝜆𝜆−1)



Chernoff-Hoeffding bounds
So, ℙ 𝑋𝑋 ≥ 1 + 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒(𝑒𝑒𝜆𝜆−1)𝜇𝜇−𝜆𝜆(1+𝛿𝛿) 𝜇𝜇.   Set 𝜆𝜆 to minimize (𝑒𝑒𝜆𝜆 = 1 + 𝛿𝛿, 𝜆𝜆 = ln 1 + 𝛿𝛿 )

Let’s analyze the numerator:

Now use 1 + 𝑥𝑥 ≤ 𝑒𝑒𝑥𝑥 to get

𝔼𝔼 𝑒𝑒𝜆𝜆𝑋𝑋 ≤ 𝑒𝑒∑𝑖𝑖 𝑝𝑝𝑖𝑖 𝑒𝑒𝜆𝜆−1 = 𝑒𝑒 𝑒𝑒𝜆𝜆−1 𝜇𝜇



Chernoff-Hoeffding bounds
So, ℙ 𝑋𝑋 ≥ 1 + 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒(𝑒𝑒𝜆𝜆−1)𝜇𝜇−𝜆𝜆(1+𝛿𝛿) 𝜇𝜇.   Set 𝜆𝜆 to minimize (𝑒𝑒𝜆𝜆 = 1 + 𝛿𝛿, 𝜆𝜆 = ln 1 + 𝛿𝛿 )

Get: ℙ 𝑋𝑋 ≥ 1 + 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒𝜇𝜇(𝛿𝛿− 1+𝛿𝛿 ln 1+𝛿𝛿 ) = 𝑒𝑒𝛿𝛿

1+𝛿𝛿 1+𝛿𝛿

𝜇𝜇
.

Similarly, ℙ 𝑋𝑋 ≤ 1 − 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒−𝛿𝛿

1−𝛿𝛿 1−𝛿𝛿

𝜇𝜇
.

For 𝛿𝛿 ∈ 0,1 can use Taylor series to simplify to:

 ℙ 𝑋𝑋 ≥ 1 + 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒−𝛿𝛿2𝜇𝜇/3

 ℙ 𝑋𝑋 ≤ 1 − 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒−𝛿𝛿2𝜇𝜇/2
𝑒𝑒𝛿𝛿− 1+𝛿𝛿 ln 1+𝛿𝛿

≤ 𝑒𝑒
𝛿𝛿− 1+𝛿𝛿 𝛿𝛿−𝛿𝛿

2

2 +
𝛿𝛿3
3 −

𝛿𝛿4
4 +⋯

= 𝑒𝑒−
𝛿𝛿2
2 +

𝛿𝛿3
6 −

𝛿𝛿4
12+⋯ ≤ 𝑒𝑒−

𝛿𝛿2
3



Comparing vs Chebyshev on fair coin tosses
Consider 𝑛𝑛 independent fair coin flips 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛, ℙ 𝑋𝑋𝑖𝑖 = 1 = 1

2
, 𝑋𝑋 = ∑𝑖𝑖 𝑋𝑋𝑖𝑖 , 𝜇𝜇 = 𝔼𝔼 𝑋𝑋 = 𝑛𝑛

2

• Chebyshev: ℙ 𝑋𝑋 − 𝜇𝜇 ≥ 𝛿𝛿𝜇𝜇 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋
𝛿𝛿2𝜇𝜇2

= 𝑛𝑛/4
𝛿𝛿2 𝑛𝑛/2 2 = 1

𝛿𝛿2𝑛𝑛
.

• Chernoff/Hoeffding: ℙ 𝑋𝑋 − 𝜇𝜇 ≥ 𝛿𝛿𝜇𝜇 ≤ 2𝑒𝑒−𝛿𝛿2𝑛𝑛/6.

 Using 𝛿𝛿 = 𝑘𝑘/ 𝑛𝑛, get ℙ 𝑋𝑋 − 𝜇𝜇 ≥ 𝑘𝑘𝑘𝑘 = 𝑒𝑒−𝑂𝑂 𝑘𝑘2 .

𝒏𝒏 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, 𝝁𝝁 = 𝟓𝟓𝟏𝟏𝟏𝟏
• Markov ℙ 𝑋𝑋 > 600 ≤ 5/6 ≈ 0.83

• Chebyshev ℙ 𝑋𝑋 > 600 ≤ ℙ 𝑋𝑋 − 500 > 0.2 × 500 ≤ ⁄250 0.2 × 500 2 ≈ 0.025

• Chernoff ℙ 𝑋𝑋 > 600 ≤ ℙ 𝑋𝑋 − 500 > 0.2 × 500 ≤ 2𝑒𝑒−.22×1000/6 ≈ 0.001



Random Vectors
Suppose we pick 𝑚𝑚 random vectors 𝑣𝑣1, … , 𝑣𝑣𝑚𝑚 ∈ −1,1 𝑛𝑛. Clearly, 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖 = 𝑛𝑛. 

What about ⟨𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗⟩ for 𝑖𝑖 ≠ 𝑗𝑗?   Claim: whp, 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 = 𝑂𝑂 𝑛𝑛 log𝑚𝑚 for all 𝑖𝑖 ≠ 𝑗𝑗.

So, even though can only have 𝑛𝑛 truly orthogonal vectors, can have a much larger 
number of nearly-orthogonal vectors.  



Random Vectors
Suppose we pick 𝑚𝑚 random vectors 𝑣𝑣1, … , 𝑣𝑣𝑚𝑚 ∈ −1,1 𝑛𝑛. Clearly, 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖 = 𝑛𝑛. 

What about ⟨𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗⟩ for 𝑖𝑖 ≠ 𝑗𝑗?   Claim: whp, 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 = 𝑂𝑂 𝑛𝑛 log𝑚𝑚 for all 𝑖𝑖 ≠ 𝑗𝑗.

Proof: First, fix some 𝑖𝑖, 𝑗𝑗 s.t. 𝑖𝑖 ≠ 𝑗𝑗 (then will do a union bound over all 
𝑚𝑚
2 such pairs). 

• For 𝑘𝑘 ∈ {1, … ,𝑛𝑛} let 𝑋𝑋𝑘𝑘 be indicator RV for event that 𝑘𝑘th coordinate of 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 are equal.

• Let 𝑋𝑋 = ∑𝑘𝑘 𝑋𝑋𝑘𝑘.  By Chernoff/Hoeffding, ℙ 𝑋𝑋 − 𝑛𝑛
2
≥ 𝛿𝛿𝑛𝑛

2
≤ 2𝑒𝑒−𝛿𝛿2𝑛𝑛/6.

• Notice that ⟨𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗⟩ = 2 𝑋𝑋 − 𝑛𝑛
2

.  So, using 𝛿𝛿 = 6 ln 𝑚𝑚
𝑛𝑛

we get:

ℙ ⟨𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗⟩ ≥ 6 𝑛𝑛 ln𝑚𝑚 = ℙ 2 𝑋𝑋 −
𝑛𝑛
2
≥ 2

𝛿𝛿𝑛𝑛
2

≤ 2𝑒𝑒−6 ln𝑚𝑚 = 2𝑚𝑚−6.

Finally, do a union bound over all 
𝑚𝑚
2 pairs.  Overall prob of failure ≤ 𝑚𝑚−4. 



Balls and Bins revisited
We saw earlier that if we toss balls independently at random into 𝑛𝑛 bins, it will take an 
expected Θ(𝑛𝑛 log𝑛𝑛) tosses until there are no empty bins.

Other statistics:

• If toss 𝑛𝑛 balls into 𝑛𝑛 bins, what is the expected fraction of empty bins?

 Let 𝑋𝑋𝑖𝑖 be indicator R.V. for event that bin 𝑖𝑖 is empty.  𝔼𝔼 𝑋𝑋𝑖𝑖 = 1 − 1
𝑛𝑛

𝑛𝑛
≈ 1

𝑒𝑒
. So, 

expected fraction of empty bins is ≈ 1/𝑒𝑒.

• If toss 𝑛𝑛 balls into 𝑛𝑛 bins, how loaded will the most-loaded bin be?



Balls and Bins revisited
Claim: if we toss 𝑛𝑛 balls into 𝑛𝑛 bins, whp no bin will have more than 𝑡𝑡 = 3 ln 𝑛𝑛

ln ln 𝑛𝑛
balls.

Proof:

• Let 𝑋𝑋𝑖𝑖𝑗𝑗 be indicator RV for event that ball 𝑗𝑗 is in bin 𝑖𝑖.  Let 𝑍𝑍𝑖𝑖 = ∑𝑗𝑗 𝑋𝑋𝑖𝑖𝑗𝑗.  What is 𝔼𝔼[𝑍𝑍𝑖𝑖]?

• 𝔼𝔼 𝑍𝑍𝑖𝑖 = 1 and is a sum of independent Bernoulli R.V.s, so can apply Chernoff/Hoeffding.

• ℙ 𝑍𝑍𝑖𝑖 ≥ 𝑡𝑡 ≤ 𝑒𝑒𝑡𝑡−1

𝑡𝑡𝑡𝑡
≤ 𝑒𝑒

𝑡𝑡

𝑡𝑡
. ℙ 𝑍𝑍𝑖𝑖 ≥ 1 + 𝛿𝛿 𝜇𝜇 ≤

𝑒𝑒𝛿𝛿

1 + 𝛿𝛿 1+𝛿𝛿

𝜇𝜇

• For 𝑡𝑡 = 3 ln 𝑛𝑛
ln ln 𝑛𝑛

we have 𝑒𝑒
𝑡𝑡

𝑡𝑡
≤ ln ln 𝑛𝑛

ln 𝑛𝑛

𝑡𝑡
= 𝑂𝑂 1

ln 𝑛𝑛

0.9𝑡𝑡
= 𝑂𝑂 𝑒𝑒−2.7 ln 𝑛𝑛 = 𝑂𝑂 𝑛𝑛−2.7 .

• Now do a union bound over all 𝑖𝑖.

= 𝑡𝑡
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